Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Chem ; 9: 750325, 2021.
Article in English | MEDLINE | ID: covidwho-1518465

ABSTRACT

Ultra-large-scale molecular docking can improve the accuracy of lead compounds in drug discovery. In this study, we developed a molecular docking piece of software, Vina@QNLM, which can use more than 4,80,000 parallel processes to search for potential lead compounds from hundreds of millions of compounds. We proposed a task scheduling mechanism for large-scale parallelism based on Vinardo and Sunway supercomputer architecture. Then, we readopted the core docking algorithm to incorporate the full advantage of the heterogeneous multicore processor architecture in intensive computing. We successfully expanded it to 10, 465, 065 cores (1,61,001 management process elements and 0, 465, 065 computing process elements), with a strong scalability of 55.92%. To the best of our knowledge, this is the first time that 10 million cores are used for molecular docking on Sunway. The introduction of the heterogeneous multicore processor architecture achieved the best speedup, which is 11x more than that of the management process element of Sunway. The performance of Vina@QNLM was comprehensively evaluated using the CASF-2013 and CASF-2016 protein-ligand benchmarks, and the screening power was the highest out of the 27 pieces of software tested in the CASF-2013 benchmark. In some existing applications, we used Vina@QNLM to dock more than 10 million molecules to nine rigid proteins related to SARS-CoV-2 within 8.5 h on 10 million cores. We also developed a platform for the general public to use the software.

2.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-1512384

ABSTRACT

Coronaviruses cause diseases in humans and livestock. The SARS-CoV-2 is infecting millions of human beings, with high morbidity and mortality worldwide. The main protease (Mpro) of coronavirus plays a pivotal role in viral replication and transcription, which, in theory, is an attractive drug target for antiviral drug development. It has been extensively discussed whether Xanthohumol is able to help COVID-19 patients. Here, we report that Xanthohumol, a small molecule in clinical trials from hops (Humulus lupulus), was a potent pan-inhibitor for various coronaviruses by targeting Mpro, for example, betacoronavirus SARS-CoV-2 (IC50 value of 1.53 µM), and alphacoronavirus PEDV (IC50 value of 7.51 µM). Xanthohumol inhibited Mpro activities in the enzymatical assays, while pretreatment with Xanthohumol restricted the SARS-CoV-2 and PEDV replication in Vero-E6 cells. Therefore, Xanthohumol is a potent pan-inhibitor of coronaviruses and an excellent lead compound for further drug development.


Subject(s)
3C Viral Proteases/antagonists & inhibitors , Flavonoids/chemistry , Propiophenones/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , 3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Alphacoronavirus/enzymology , Alphacoronavirus/physiology , Amino Acid Sequence , Animals , Binding Sites , Biological Products/chemistry , Biological Products/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , COVID-19/virology , Catalytic Domain , Chlorocebus aethiops , Coronavirus/enzymology , Coronavirus/physiology , Flavonoids/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Molecular Docking Simulation , Propiophenones/metabolism , Propiophenones/pharmacology , Propiophenones/therapeutic use , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2/isolation & purification , Sequence Alignment , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL